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Abstract. Inelastic scattering of electrons in solids is computed from a generalized oscillator
strength model based on optical and photoelectric data. The optical oscillator strength is extended
into the non-zero momentum transfer region by using free-¢lectron gas dispersion for the weakly
bound electrons. The applicability of this method to non-conduction valence electrons and to
inner shells is discussed. A different extension method, which reproduces ionization thresholds,
is used for inner-shell jonization. The calculations are simplified by using a two-modes model
for the Lindhard theory of the fres-electron gas, Exchange effects are accouned for by means of
a medified Ochkur approximation. Inclastic mean free paths and stopping powers obtained from
this optical-data model for four materials (Al, Si, Cu and Au) and for electrons with energies
from 10 eV to 10 keV are presented.

1. Introduction

During the past few years, a number of phenomenological ‘optical-data” models to compute
the inelastic scattering of electrons in solids have been proposed. The common characteristic
of these models is the use of an optical oscillator strength (005) obtained from experimental
optical data, which is extended into the non-zero momentum transfer region by means of
a physically motivated (but in general approximate) relation between momentum transfer
and energy transfer, subsequently referred to as the ‘extension algorithm’. In the simplest
versions, this relation may be a dispersion formula giving energy transfer as a single-valued
function of momentum transfer. In this way, a model of the generalized oscillator strength
{GOS) is obtained.

A predecessor of the optical-data model calculations is the work of Tung ez af [1], who
used the 00S obtained from the focal plasma approximation [2] and extended it into the
GOs by means of the Lindhard theory for the homogeneous free-electron gas (FEG) [3]. The
first calculations based on experimental QOSs were performed by Ashley [4] {see also [5,
6]) using a one-mode approximation instead of the Lindhard theory in order to simplify
the numerical calculations. More recently, Penn [7] proposed a similar model in which the
GOs is obtained by extending the experimental 0O0S by means of the Lindhard theory. The
extension algorithms based on FEG theory appear to be adequate to describe excitations of
weakly bound electrons. However, they fail to account properly for inner-shell ionizations.
An extension algorithm more suited for this has been investigated by Mayo! and Salvat
[8]. In a previous paper [9] we have presented a comparative study of some different GOS
models.
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The optical-data models are typically used to describe inelastic scattering of electrons
with kinetic energies from ~ 10 eV up to ~ 10 keV. 1t may be noted that, while the
differential cross section {DCS) for the most probable excitations (i.e. those inveolving low
momentum transfers, which correspond to small scattering angles) is almost completely
determined by the 00S, a2 model of the GOS is required for the calculation of the complete
DCS, the inelastic mean free path and the stopping power. It should also be noted that
exchange effects have a non-negligible influence on the scattering process [5], even for
high-energy electrons. Energies higher than a few tens of keV require the introduction of
relativistic corrections (see e.g. [8]).

In the present paper we propose a new optical-data GOS model for calculating inelastic
pess for electrons in solids. The model is designed to serve also as a suitable basis for
sampling routines in a Monte Carlo simulation. In summary, our method is as follows. The
information needed to compute the DCS is provided by the 008. Excitations of weakly bound
electrons are treated by using FEG theory as the extension algorithm. A two-modes model
of the Lindhard FEG theory is used to simplify the calculations. Inner-shell ionizations
are treated by means of the alternative extension algorithm used in {8]. Exchange effects
are introduced through a modified Ochkur approximation [10, 11] which leads to the non-
relativistic Meller DCS for binary electron collisions.

Inelastic mean free paths and stopping powers have been compuited for electrons with
kinetic energies in the range 10 eV to 10 keV and for four single-element materials, for

which 00Ss are available from the literature. Fitted analytical formulae for these quantities
are aiso given.

2, Theory

2.1. Basic relations

Inelastic interactions of non-relativistic electrons having velocity v with isolated atoms or

molecules can be described, to the first-order Bom approximation, by means of the DCS
(12]

do/d0dW = (we*/EX1/WQ)(df (@, W)/dW) (D

where ¢ is the electron charge, £ = %mvz, W is the energy transfer and Q, which for
brevity is named the ‘recoil energy’, is defined as

Q=q%/2m (2a)

where g is the momentum transfer and m is the electron mass. O is related to the scattering
angle ¢ by

Q =2E - W~ 2[E(E = W)]'"cos8. (2b)

The quantity df(Q, W)/dW is the GOS, which completely characterizes the target
(within the Born approximation) [12). It satisfies the Bethe sum rule [12, 13]

oW

A aw W=2 3

where Z is the number of electrons per atom or molecule.
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For condensed media, the usual approach is to start from the dielectric energy-loss
function Im[—1/e(Q, W], which is related to the GOS through [14]

df(Q. W)/dW = QW/zQ)ZIm(~1/e(Q, W)) @
where €(Q, W} is the dielectric function of the stopping material, 2, is given by
Qp = (dnh?e’NZ/m)'? (5)

where N is the number of atoms or molecules per unit volume. £ coincides with the
plasmon energy of an homogeneous electron gas with a density equal to the average electron
density of the stopping material. Using equation (4), the GOS concept and equation (1) can
be applied to inelastic scattering in condensed matter and in the homogeneous electron gas.
In the latter case, it is more convenient to refer to the ‘one-electron GOS8’ (GOS per electron),
i.e. the Bethe sum rule (3) for the electron gas adds to unity. Equation (1) (with equation
(4)) has been applied with some success down to energies of about 10 eV {1, 4-7], in spite
of the fact that the Born approximation and the description of the electron as being scattered
‘between plane-wave states appears doubtful at these energies.
The inelastic mean free path A and the stopping power S are given by

A._l = NO'(O) S = Ng’”J (6)

where ¢'® and 0" are the total inelastic cross section and the stopping cross section,
respectively, defined by

) Vinas do -
= aw w” d 7
o fo ];2 QdeW )

If we, for the moment, neglect exchange, the maximum energy loss is Wya=E. For a
given W and varying scattering angle, the kinematically allowed recoil energies lie in the
interval 0_ < @ < Q. given by

Qs =[E'2 L (E - W)/, 8)

The GOS is known analytically only for the simplest atomic target, ramely the hydrogen
atom (see e.g. [12]}. The dielectric function of the FEG, derived from the random phase
approximation, has been given in analytical form by Lindhard [3]. The GOS for inner shells
in certain atoms has been computed, for example by Leapman er o/ [15]. Except for certain
cases such as Al [16], the complete GOS has not been calculated from first principles; it also
seems to be, in general, a formidable task.

In the optical limit, @ = 0, the GOS reduces to the 00s, df (W)/dW = df (0, W) /dW.
It should, however, be observed that, as regards inelastic scattering in condensed matter,
d f(W)/dW is not identical to the (dipole transition) 0OS related to the absorption of photons
[17] (cf {12]), they are approximately equal if Im{—1/¢(0, W)] =~ Im[e(0, W)}, ie. if
le0, W) ~ 1.

Experimental information on the OGS is presently available for many materials, mainly
from optical and synchrotron radiation studies [18, 19] or as photoelectric absorption data
{20, 213. This information, complemented with assumptions about dispersion (i.e. variation
of the GOS with (), has been used to work out different Gos models [4-8]. We extend



3596 J M Ferndndez-Varea et al

the experimentally determined. 00s, denoted [df(W)/dW]ep, into the GOS (i.e. to values
Q> 0) by

= =] 7
QW) _ f [df(w )] PR 0, W) W’ )
dw 0 aW’ e
where F(W’; @, W) is the ‘one-electron’ GOS or extension algorithm, i.e. the GOS obtained
by extending a unit strength (one-electron) optical oscillator with resonance energy W’ into
the @ > O region (see [9]). In fact, the true GOS can always be expressed in this way
[9]. The approximation to be introduced consists basically of the use of phenomenological
but physically motivated extension algorithms. Expressions for F(W'; 0, W) will be given
below. Note that, as required by equation (9), F(W'; 0, W) = 8(W' — W).

2.2. Preparation of the 00§

The 00Ss adopted in the present calculations have been obtained from optical data which
are available either in the form of the refractive index n and the extinction coefficient « [18,
197 or as the photoelectric cross section opy, [20, 21]. In the first case, the 0OS is evaluated
by using equation (4) for Q@ = 0 with € = (r+ix)2 In the second case, the 00s is obtained
by means of the relation {22]

df(W)/dW = (mc/2m%eh)on (10)

which applies when |e|? is close to unity.

Unfortunately, for most materials, experimental optical data currently available extend
over limited energy-loss ranges so that the complete 00S can only be obtained approximately
by combining a variety of measured data (usually from different authors, obtained with
various instruments and techniques and on different samples) with theoretical photoelectric
cross sections. For the noble metals Cu and Au, we have constructed the ‘experimental’
00S by combining optical data (i.e. refractive index and extinction coefficient) from [18] for
W < W,4, and theoretical photoelectric cross sections from Cullen et af [21] for W > Wy,
with Woq = 0.9 keV for Cu and 2 keV for Au. In the case of Al, we have directly employed
the dielectric constant given by Smith et af [23, 24), extrapolated for W > 10 keV. For
the semiconductor Si we have made use of data given by Bichsel [25], which cover the
whole energy range of interest. All these QOSs are given in tabular form; in the numerical
evaluation of integrals involving the 00S we have used the continuous function obtained by
linear interpolation on a log—log representation of the tabulated values. Figure 1 shows the
ooss for Al, 8i, Cu and Au.

The consistency of the adopted 00Ss can be checked by means of various sum rules.
We utilize the f sum rule [17, 18]

df(W) _
zf dw =1 (11)

and the perfect-screening sum rule [26, 27] (or ps sum) which, when written in terms of
the 008, takes the form

Q2 ro 1 df(W)
b _
Z wEaw =1 1z
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Figure 1. ooss for (@) Al [23, 24], (b) Si [25] and for () Cu and (4} A [18, 21].

The main contributions to the ps sum arise from the region of small energy losses and,
therefore, this sum rule provides a check for the low energy loss behaviour of the 00S. The
f sum rule is more sensitive to medium and large energy losses and, thus, it gives a global
measure of the quality of the 00S in this region, Further relevant integrals of the 0OS are

* R df(W)
M20 —_ dw 13
T fe WodW _ (13)

(where R = 13.6 eV is the Rydberg energy) and the well-known mean ionization energy /
given by

o0 -1
lnIE(f mdw) flwmdw (14)
1]
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The values of the f and ps sums and the quantities Mtf,, and [, computed from the 00Ss
described above, are given in table 1, The reliability of the coss for Al [23, 24] and Si
[25] is supported by the values of the £ and ps sums.

Table 1. Values of the f and ps sums, equations {11) and (12), the mean ionization energy
{, equation {14}, and Mfm. equation (13), for different materials. Isg are the mean ionization
energies recommended in [28].

Material 4 £ sum ps sum 1 V) Isp (V) M2,
Al 13 0.993 0.984 164 1662 3.08
Si i4 0.991 0.914 174 1733 3.42
Cu 29 0.981 0.999 323 32210 3.47
Au 7% 0.968 1.090 737 790::30 6.38

From electron energy loss spectroscopy (EELS) measurements one can infer the energy
loss spectrum in single inelastic collisions with scattering angle less than a certain value
fmax, determined by the experimental set-up. Usually, G,y is small (a few degrees) and
the initial kinetic energy is much larger than the observed energy losses. Under these

circumstances {fnux € 1, W « E), the EEL spectrum in single collisions can be computed,
to lowest order, as

Q=) 42 4 2
[36_} _ f _Fo o T LAfOW) 1+(2Ef’m) L s)

This equation shows explicitly that, in this approximation, different extension algorithms
lead to the same result; thus, the ability of a Monte Carlo program to reproduce such
small-angle spectra is dependent primarily on the 00S. Small-angie EEL spectra for Cu,
computed from the presently compiled 00S by means of equation (15} and derived from a
measurement {29], are compared in figure 2.

un.)
I
®» @ O

o)

o o o
Qo N

[do/dW]g.s,, {arb.

W (eV)

Figure 2. Single scattering L spectrum for electrons in Cu (E = 60 keV, dmax = 0.1 rad),
computed from the 0os by means of equation (15) (full curve) and obtained from experiment
[29] (dashed curve).
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2.3. Excitation of weakly bound electrons

FEG theory plays a central role in most of the optical-data models proposed to date. In the
modeis proposed by Ashley [4-6] and Penn [7], the extension algorithms are provided either
by the Lindhard theory or by suitable one-mode approximations to it. We may characterize
the FEG by the plasmon energy &,, which is related to the electron gas density o through

&, = (4mhtep/m)' 2, (16)
The one-electron GOs for a FEG with plasmon energy &, is given by
FL&: @, W) = QW/rENIm (~1/eL(&:; @, W) (17

where e_(Q, W) is the Lindhard dielectric function [3, 30]. It should be noticed that the
008 of equation (17) (neglecting plasmon damping) reduces to the delta function

Fu(&: 0, W) = 8(W — &). (18)

The evaluation of cross sections {7) for a FEG with the GOS given by equation (17)
has to be performed numerically and is quite lengthy. To simplify the calculations, we use
the f()IIowing two-modes approximation (similar to the T model of reference [9]) for the
one-electron GOS of the FEG:

Fr(& Q. W) =[1 — g(DS(W — W(Q)) + g(Q)(W — Q) (19}
where g
. o3
Wr(Q)—_‘gF'"BQ g(Q)=mlnll, Am} (20)

Equations (19) and (20) may be interpreted as follows. Within a Hmited region of small
2, two excitation modes coexist. One mode or branch with strength 1 — g(Q) corresponds
to plasmon excitation with the dispersion relation W:(Q); the other, with strength £(0),
represents electron~hole excitation. For large O, the plasmon branch disappears and the
electron-hole branch attains a unit strength. For small Q, g(@) decreases to zero roughly
as 0% thus, the strength of the plasmon branch is unity for @=0 [9].

The particular form of the functions Wi (@) and g{Q) and the values of the parameters
A and B have been determined by requiring the resulting one-electron cross sections to
agree closely with those computed from the Lindhard dielectric function [31] (see below).
The presently adopted values of these parameters are

3 X2 /2 1 1 . (I""XZ/3)”2
A(‘S")“(‘s') L+%x2+x(1—x2/3)’”m ( X ) a1

for ¥2 < 3,

Ag) =% (21b)

for x> 3 and

B(&) = (1+ §x)8&/&, (21c)
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where

& = (12/2m) (3n%p)"* = L (0x*/16)(/me")'” €472 22)

is the Fermi energy of the FEG and
xi= %(Ep/gp)z. (23)

(In the range 0 < &, < 100 eV, A varies between % and =~ 0.9, and B between ~ 0.4 and
=~ 1.9). Evidently, we have

foo Fr(&; @, W)dW = 1. 24)
0

The mean free path and the stopping power of electrons moving in a FEG are given by
A~ = pe® and S = po'!, where o' are the one-electron cross sections (7). However,
the maximum energy loss is Wy = E — & since larger energy losses would place the
incident electron into a state below the Fermi level. With the GOS given by equations
(19)-(21) the cross sections (7) can be evaluated analytically.

The expression (21a) for the parameter A has been determined so as to exactly reproduce
the analytical expressions obtained for the mean free path and the stopping power from
Lindhard’s theory in the low-energy limit [30, 31]. According to the Lindhard theory, the
plasmon dispersion is given by Wi(Q) = & + 663/ (5&) + O(Q?). The slope B of the
piasmon line in the two-modes model, given by equation {21c), has been determined to
optimize the agreement of the computed mean free paths and stopping powers with the
results of Lindhard’s theory.

Inverse mean free paths and stopping powers of electrons in electron gases of different
plasmon energies, computed from Lindhard’s GOs, equation (17}, and from the two-modes
model, equations (19(21), are compared in figure 3. It is seen that the two-modes model
yields results which agree closely with those from the Lindhard theory.

The GOS obtained purely from the two-modes model is

df(Q, W) _ [®[df(w) . ,

W fo [ W ]exp Fr(W’'; g, W)dw (25)
where Fr(W’'; Q, W) is the one-electron GOS of a FEG with plasmon energy W’ as defined
in equation (19). (Replacing Fr by FL in equation (25) we recover Penn’s model [7].)
Owing to equation (18) (or the first term in equation (19)), the GOS (25) reduces to the
experimental 008 in the limit Q=0. Furthermore, by equation (24}, the Bethe sum rule
(3) is automatically satisfied, provided the adopted oS fulfils the f sum rule, It may be
noted that a continuous superposition of undamped FEG extension functions with varying
W' apparently can be used to model, for example, short-lived (broad) plasmon excitations.

We expect extension models based on FEG theory to be sufficiently adequate for weakly

bound electrons in general, i.e. also for non-conduction bands. Qur arguments for this are
briefly discussed in the appendix.

24, Excitation of inner-shell electrons

Models based on the FEG have been shown (8] to be unsuitable for describing inner-shell
ionization. They permit energy losses less than the ionization threshold. Moreover, the
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plasmon branch gives rise to a pseudo-threshold, which however is displaced, because
B > 0 (equation (20)). A GOS model which is more adequate for inner-shell ionization [8]
may be expressed as

QI _ ([ g o %
g = @] Boview 26)

where
F(W'; 0, W) = 5(W — W) OW' ~ 0) + 8(W — 0)6(Q — W) an

and @ is the unit step function. The one-electron GOS defined by equation (27) will be
referred to as a ‘3-oscillator [32] (the S model of reference [9]). In this dispersion relation
between @ and W, the first term models the contribution from *distant’ collisions (i.e. dipole
transitions in the optical limit), while the second tenn modeis the contribution from ‘close’
collisions (i.e. the Bethe ridge) [9, 32]. K-shell ionization cross sections computed from
the GOS model given by equation (26), using hydrogenic 00Ss, are in good agreement with
experimental data [8].

2.5. New optical-data model

2.5.1. Extension formula. We have previously compared different optical-data GOS models
and suggested that a combination of the two-modes model given by equation (19) (for
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valence electron excitations) and the d-oscillator model given by equation (27) {for core
electron excitations) should be a convenient approach [9]. Accordingly, we shall compute
the GOS from equation (9) with

W0, Wy  HW<W,

F(Wh 0, W)=
( ew Fs(W; @, W) if W' > W,

(28)

The switch energy W, separates the region of low resonance energies W', where the
excitations in the low-Q limit have a large degree of collective character, from the high
resonance energy region. W is placed at the first threshold for inner-shell excitation, i.e. at
the smallest core-level binding energy (see table 2). The regions W’ < W; and W' > W,
are thus characterized by different dispersion relations.

Table 2. Fermi energy Ep, switch energy Ws and correspondig core level for different materials,
For Si, we have assumed four valence electrons per atom, treating them as a FEG {25].

Material Ep (V) W (eV) fevel

Al 1i.7 73 2p
Si 12.5 99 2p
Cu 7.0 74 3p
Au 53 54 Sp32

The DCS given by equation (1) can be written as

df(w" dzal(W’) ;
deW [ dw’ Lp dQdW aw (@)
where
&0 (W')/dQaW = (me* /E)1/WQ)F(W'; Q, W) (30)

may be regarded as the DCS for a one-electron oscillator with resonance energy W' in the
00S [imit.

25.2. Exchange correction. When the projectile is an electron, exchange between the
incident electron and the electrons in the medium must be taken into account. To our
knowledge, exchange effects in optical-data model calculations have only been considered
by Ashley [5, 6], who used a heuristic approach. A more conventional tool for dealing with
exchange effects is provided by the Ochkur approximation [10]. The Bomn—Ochkur DCS is
given by

Fo/dQdW = (xe*/EY1/WQ) [1 — Q/E + (Q/EY]df(Q, W)/dW (31)

and is obtained by considering that the exchange scattering amplitude is approximately
given by the leading term of an expansion of the Born—-Oppenheimer amplitude in inverse
powers of E [l1]. Therefore, the Bom—Ochkur approximation is essentially a high-
energy approximation. For energies near the ionization thresholds, where optically allowed
excitations (i.e, excitations with @ « W) dominate, the Bomm—Ochkur approximation gives
a satisfactory description of exchange effects [33]. On the other hand, collisions with energy
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loss W much larger than the energies of the electrons in the target can be described as binary
collisions with free electrons at rest. The DCS for this kind of collision may be calculated
exactly [13] and, for projectiles with kinetic energy much larger than the Rydberg energy,
it simplifies to the non-relativistic Mpller DCS

do  me* 1 w Wy
W=Tﬁ[“g_w+(3_w)]‘ G2

Clearly, this result differs from the limiting behaviour of the Ochkur exchange correction
for large W. :

We shall introduce exchange effects by using the following one-electron DCS:

o (W me* |1 o o 2 .
dQdW ~ E WQ[I”E+WI—W (E+W’—W)]F(W’Q'W)'- (33)
The modification introduced here, which is permissible owing to the asymptotic nature of
the Bom—Ochkur approximation, agrees with the usual correction given in equation (31)
when W=W" and has the desirable effect of leading to the non-relativistic Mglier bcs,
equation (32), when W » W’ (since then @ ~ W). Due to the indistinguishability of the
‘primary’ and the *struck’ electrons, we can consider the primary as the most energetic after
the collision. Owing to this convention, in collisions with free electrons at rest the energy
loss of the primary electron cannot exceed the value Woax = 1E. In the case of inner-
shell ionization, the primary and secondary electrons have the same kinetic energy when
W = Wpax = %(E + Ey), where Ey, is the ionization energy of the considered shell. Notice
that, Dy using this value for Wy, the Ochkur correction keeps the ionization threshold
unaltered.
The value of the maximum energy loss is also limited by the exclusion principle, which

forbids energy losses larger than £ — Ep that would place the incident electron into an
occupied state below the Fermi level Ep of the medium (see table 2).

2.5.3. Resulting one-electron cross sections. The exchange corrected one-electron DCSs for

W’ > W, t.e. when the extension algorithm is the §-oscillator given by equation (27), are
computed as

2- t 4 z -
do (W) _me* 1 [1 _%+(2) }a(w_w')@(w’—g)

d0dW ~ E WO E
met 1 Q 0 2
+TWQ[“E+W*-W+(E+W—W)] _,
x 3(W — Q)8(Q — W"). (34

The first term in this expression corresponds to distant (‘resonance’) collisions; the Ochkur
correction factor has the usual form given by equation (31). The second term accounts for
close (binary) collisions; when W’ « E ~ W, it reduces to the non-relativistic Maller DCS,
equation (32).

In order to get a general recipe which keeps the ionization thresholds unaltered, the
maximum energy loss is taken to be Wy (W) = min{E — Ef, %(E + W9} This is
equivalent to considering W’ as the ‘binding energy’ of the target electron. This assumption
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was also adopted by Ashley {5] and is justified by the fact that most inner-shell excitations
occur for W’ not much larger than the ionization threshold.

Excitations with W' < W, are treated as if they occur in a FEG with plasmon energy
W', and are described by using the two-modes GOS madel given by (19). Since the Ochkur
exchange correction is based on the assumption of single-electron excitations, it is not
justified for plasmon (i.e. collective) excitations of an electron gas. Therefore, the one-
electron DCSs for W' < W are split into contributions from electron-hole and plasmon-like
excitations:

d2o (W) /dQAW = dPoy n(W')}/dQAW + d%0y pi(W')/dQdW. (35)

The contribution from electron-hole excitations, including Ochkur’s exchange correction,
is given by (see equations (19) and (33))

@0 (W) met 1 {1‘ Q +( Q

dgaw  E WQ| E—-W \NE—-W

2
) ]g(Q)ﬁ(W - Q. (36)

Here the maximum energy loss is taken to be Wyu(W/) = min{E — Ep, %E}, i.e. the
‘binding energy’ is set equal to zero. The one-electron DCS for plasmon-like excitations is
computed direcily from equations (19) and (30}, i.e.

&0y (W) /dQAW = (we*/E) (1/W QY [1 — g(DIS(W - W{(Q)  (37)

and the maximum energy loss is Wi (W) = E — Ep.

Finally, to obtain the inelastic mean free path A and the stopping power § we have to
compute the integrals

n) — = df(W’):l ) i s
o _fﬂ [dw, o (W')dw (38)

for n =0 and n == 1, respectively, where
Wrnax (W) [+ dzo. (W!)
{n) ' n 1
= dW W —— 39
ot = | fg 10 (39)

are the one-electron total cross sections which, by using equations (34)-(37), can be
evaluated analytically. The resulting expressions are lengthy, but simple to code in a
computer program {34]. The numerical evaluation of & and § reduces to a single quadrature.

3. Calculation of » and §

Computed inelastic mean free paths and stopping powers for Al, Si, Cu and Au are shown in
figures 4-7 as functions of £ — Eg. For comparison purposes, we also give the results from
the optical-data model calculations of Ashley [6] and of Tanuma er @/ [35]. These authors
used 00Ss and extension algorithms different from the ones adopted here. Ashley used a
different approach to introduce exchange effecis, which are neglected in the calculations on
mean free paths by Tanuma er al. The magnitude of the exchange corrections on calculated
& and S is indicated in figure 5. Exchange effects have a stronger influence on the stopping
power than on the mean free path (since S is more sensitive to the high energy loss part of
the inelastic DCS). The effect of the value of W; on A and § is indicated in figure 7, where

we compare results obtained with W, = 30, 54 and 80 eV for Au. The dependence on W,
can be understood from the global analysis in [9].
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Figure 4. Inelastic mean free path X (a) and stopping power § (&) for electrons in AL Results
from the present optical-data model are represented as full curves. Short-dashed and long-dashed
curves represent the optical-data model calculations of Tanuma ef al [35] and of Ashley [6],
respectively. Crosses are theoretical calculations of Ashley er g [16]. Experimental data for A
are from references [36] (@), [37] (O) and [38] (4); experimental data for § are from references
[39] (O} [40] (), [41] (W) and [42] (A).

4. Fitted analytical formulae for A and S

For practical purposes, it may be usefui to have simple analytical formulae for the inelastic
mean free path and the stopping power. We use the asymptotic formulae due to Bethe [12]
as a guide to obtain expressions with a wider range of validity. The Bethe formula for the
mean free path is ’

A7l = N(we*/ER) [ML, In (4ew E/R) + yi(R/E) + OI(R/ENY]. (40)

The quantities ¢y and 4, are integral properties of the GOS, which cannot be computed
only from the 0O0s.
The Bethe formula for the stopping power can be written

S = NQre'/E)Z [In(E/1) + 3(1 —In2) + O(R/ E)] 1)
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Figure 5. Inelastic mean free path A (2) and stopping power S (b} for electrons in Si. Results
from the present optical-data model are represented as full curves. Results obtained by excluding
the Ochkur exchange comrection are represented as dashed curves, Experimental data for A are
from references [43] (00, [44] (@), [45) (A), [46] (A}, [47] (CD), {48] (M) and [49] (V).

where [ is the mean ionization energy. The second term on the right-hand side of equation
(41) originates from exchange.
From formulae (40) and (41) we expect that, for energies which are not too low, the

calculated mean free paths and stopping powers may be closely reproduced by the following
expressions:

A7t = N(re*/ER)Y[MZ In (42, E/ R) + ax(R/E) + a3(R/E)?] (42)
S =NQue*/E)Z[In(E/T}+ }(1 ~In2) + ay(R/E) + as(R/E)*] (43)
where the dimensionless quantities ay, ..., as are considered as adjustable parameters.

Except for small kinetic energies, the results obtained by our optical-data model
calculation can be closely approximated by expressions (42) and (43). The values of the
parameters ay, ..., s, given in table 3, have been determined by numerical least squares
fit to the calculated mean free path and stopping power for kinetic energies larger than
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Figure 6. Inelastic mean free path A (2) and stopping power § (b) for electrons in Cu. Results
from the present optical-data model are represented as full curves. Short-dashed and long-dashed
curves represent the optical-data model calcelations of Tanuma er al [35] and of Ashley [6],
respectively. Experimental data for A are from references [43] (@), [50] (a), [51] ¢O) and [52]

(A); experimental data for § are from reference [39] ({).

300 eV for A and larger than Zx10 eV for S. It is not convenient to extend the fit to
lower energies, since in this region the behaviour of A and § cannot be reproduced by the
simple expressions (42) and (43). In the considered energy intervals, the relative differences

between the numerical values and the fitted analytical formulae are less than 2%.

Table 3. Parameters of the analytical formulae (42) and (43) for different materials.

Material @ az a3 a4 as

Al 0.8532 ~65.37 638.0 7.886 -19.17

Si 0.8503 ~70.35 685.8 8.666 -21.62

Cu 0.4504 -103.4 1114 18.92 —98.98
=204.4 2421 5293 —798.3

Au 0.4009
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Figure 7. Inclastic mean free path A (@) and stopping power § (&) for electrons in Au. Resulis
obtained from the present optical-data model with W = 30, 54 and 80 eV are represented
as short-dashed, full and long-dashed curves, respectively. Experimental data for A are from

references [50] (), [33] (O), [54] (A), [55] (O, [56] (W), [57] (¥), [58] (¢}, [59] (&) and [60]
(®); experimental data for 5 are from reference [39] ({).

Appendix 1.

The application of FEG theory as an extension algorithm for the contribution to the 00S
from electrons in non-conduction bands—for example the valence electrons in Si and the
3d electrons in Cu—may be questioned. As available one-electron excitations are interband
rather than intraband transitions, the FEG model is apparently in error since it allows energy
losses below the energy gap threshold. A basic argument in favour of the FEG model is the
importance of collective effects in the excitation of weakly bound electrons in condensed
matter | 14]. For example, it would not be possible to separate the 00$ into different regions
originating from the 4s and the 3d electrons in Cu, due to their mutual polarization. Due
to this collective behaviour, one might expect a similar dispersion relation as in the FEG.
Several authors have presented models for the interaction of a charged particle with a
semiconductor or insulator by introducing a band gap in a FEG model (see e.g. references
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[61-63]). In this spirit, we have examined the effect of 2 ‘band gap’ introduced into the
two-modes model. For brevity and clearness we neglect exchange and consider a simplified
two-modes model of the FEG with the Gos:

F(&: . W) =11 - g(DNEW — (& + D) + g(Ds(W — Q) A1)

where
g(Q) = min{l1, Q3/€3}- ' (A.2)

A band gap E; is introduced (preservmg the valldlty of the sum rule (3) and algebraic
simplicity) by changmg equation (A.1) into

F(&: Q. W) =1 - g(Q6W — (& + O)) + g(QE(W — max{Ey, Q). (A3)

For incident eleciron energies £ < Eg, the cross sections obtained with equation (A.3)
wiil be zero. For E > E,, the results of equations (A.1) and (A.3) will differ only in
the contribution from the second term in the interval 0 < Q@ < E;. A simple calculation
shows that the differences in mean free path and stopping power between (A.1) and (A.3)
are negligible, except at energies £ < 2E,. Since Eg typically has a magnitude of a few
eV, this difference can be ignored at energies of interest. Moreover, ‘false’ energy losses
W < Eg are rare since they appear only for ¢ < £, where the plasmon mode nearly
exhausts the Bethe sum rule. Evidently, they do not appear in the small-angle spectrum, as
seen from equation (15). We conclude that the FEG should be an acceptable approximation.
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