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J. Phys.: Candens. Matter 5 (1993) 3593-3610, Rinted in the UK 

Inelastic scattering of electrons in solids from a generalized 
oscillator strength model using optical and photoelectric data 

J M FemAndez-Vareat, R Mayolt, D LiljequisQ and F Salvati 
t Facultat de Flsica (ECM). Universilat de Barcelona. Socielat W a n a  de Flsica OEC), 
Diagonal 647, 08028 Barcelonq Spain 
$ Department of Physics, Universiry of Stockholm, V d i s v .  9, S-113 46 Smkholm, Sweden 

Reoeived 30 September 1992 

Abstract. Inelastic scattering of elecMlvI in solids is computed f“ a generalizd oscillator 
strength model based on optical and phomlemic data The optical oscillator strength is extended 
into the non-zero momen” transfer region by using free-electron gas dispersion for lhe weakly 
bound elecmns. The applicability of ulis method to nonanduction valence e l e c ”  and to 
inner shells is discussed. A different extension method, which reproduces ionization ulresholds, 
is used for inner-shell ionization. The calculations are simplified by using a two-modes model 
for the Lindhard theory of the free-electmn gas. Exchange effects are acmunled for by means of 
a modified Ochkur approximation. Inelastic mean free paths and stopping powers obtained f” 
this optical-data model for four malerials (AI, Si, Cu and Au) and for elecmns with energies 
from IO eV to 10 keV are presented. 

1. Introduction 

During the past few years, a number of phenomenological ‘optical-data’ models to compute 
the inelastic scattering of electrons in solids have been proposed. The common characteristic 
of these models is the use of an optical oscillator strength (00s) obtained from experimenral 
optical data which is extended into the non-zero momentum transfer region by means of 
a physically motivated (but in general approximate) relation between momentum transfer 
and energy transfer, subsequently referred to as the ‘extension algorithm’. In the simplest 
versions, this relation may be a dispersion formula giving energy transfer as a single-valued 
function of momentum transfer. In this way, a model of the generalized oscillator strength 
(GOS) is obtained. 

A predecessor of the optical-data model calculations is the work of Tung er a1 [I], who 
used the 00.5 obtained from the local plasma approximation [2] and extended it into the 
COS by means of the Lindhard theory for the homogeneous free-electron gas (FEG) [3]. The 
first calculations based on experimental 00% were performed by Ashley [4] (see also [5, 
61) using a one-mode approximation instead of the Lindhard theory in order to simplify 
the numerical calculations. More recently, Penn [7] proposed a similar model in which the 
0 0 s  is obtained by extending the experimental 00s  by means of the Lindhard theory. The 
extension algorithms based on FEG theory appear to be adequate to describe excitations of 
weakly bound electrons. However, they fail to account properly for inner-shell ionizations. 
An extension algorithm more suited for this has been investigated by Mayo1 and Salvat 
[SI. In a previous paper [9] we have presented a comparative study of some different Gos 
models. 
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3594 J M Fern6ndez-Varea et al 

The optical-data models are typically used to describe inelastic scattering of electrons 
with kinetic energies from - IO eV up to ,., 10 keV. It may be noted that, while the 
differential cross section (DCS) for the most probable excitations (i.e. those involving low 
momentum transfers, which correspond to small scattering angles) is almost completely 
determined by the 00s. a model of the Gos is required for the calculation of the complete 
DCS, the inelastic mean free path and the stopping power. It should also be noted that 
exchange effects have a non-negligible influence on the scattering process [ 5 ] ,  even for 
high-energy electrons. Energies higher than a few tens of keV require the introduction of 
relativistic corrections (see e.g. [SI). 

In the present paper we propose a new opticaldata Gos model for calculating inelastic 
DCSs for electrons in solids. The model is designed to serve also as a suitable basis for 
sampling routines in a Monte Carlo simulation. In summary, our method is as follows. The 
information needed to compute the Dcs is provided by the 00s. Excitations of weakly bound 
electrons are mated by using FEG theory as the extension algorithm. A two-modes model 
of the Lindhard FMj theory is used to simplify the calculations. Inner-shell ionizations 
are treated by means of the alternative extension algorithm used in [8 ] .  Exchange effects 
are introduced through a modified Ochkur approximation [ 10, 1 I] which leads to the non- 
relativistic Mdler ~ c s  for binary electron collisions. 

Inelastic mean free paths and stopping powers have been computed for electrons with 
kinetic energies in the range IO eV to 10 keV and for four single-element materials, for 
which OOSs are available from the literature. Fitted analytical formulae for these quantities 
are also given. 

2. Theory 

2.1. Basic relations 

Inelastic interactions of non-relativistic electrons having velocity U with isolated atoms or 
molecules can be described, to the first-order Born approximation, by means of the DCS 
[I21 

d20/dQdW = (ze4/W1/WQ)(df(Q. W)/dW) (1) 

where e is the electron charge, E = ;mu2, W is the energy transfer and Q, which for 
brevity is named the ‘recoil energy’, is defined as 

Q = q2/2m 

where q is the momentum transfer and m is the electron mass. Q is related to the scattering 
angle e by 

Q = 2E - W - 2 [ E ( E  - W ) 1 ” 2 ~ ~ ~ 8 .  

The quantity df(Q, W)/dW is the GOS, which completely characterizes the target 
(within the Born approximation) [121. It satisfies the Bethe sum rule [12, 131 

where 2 is the number of electrons per atom or molecule. 
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For condensed media, the usual approach is to start from the dielectric energy-loss 
function Im[-I/e(Q, W)], which is related to the Gos through [I41 

df(Q,  W)JdW = ( ~ W / X Q ~ ) Z I ~ ( - ~ / E ( Q ,  W)) 

52, = (4zhZeZNZ/m)'lZ (5) 

(4) 

where e ( Q .  W) is the dielectric function of the stopping material. S2, is given by 

where N is the number of atoms or molecules per unit volume. S2, coincides with the 
plasmon energy of an homogeneous electron gas with a density equal to the average electron 
density of the stopping material. Using equation (4), the 00s concept and equation (1) can 
be applied to inelastic scattering in condensed matter and in the homogeneous electron gas. 
In the latter case, it is more convenient to refer to the 'one-electron COS' (GOS per electron), 
i.e. the Bethe sum rule (3) for the electron gas adds to unity. Equation ( I )  (with equation 
(4)) has been applied with some success down to energies of about 10 eV [l, 4-71, in spite 
of the fact that the Born approximation and the description of the electron as being scattered 
between plane-wave states appears doubtful at these energies. 

The inelastic mean free path A and the stopping power S are given by 

(6) A-1 = Na.'O) S = No"] 

where do' and a'" are the total inelastic crass section and the stopping cross section, 
respectively, defined by 

If we, for the moment, neglect exchange, the maximum energy loss is W,,=E. For a 
given W and varying scattering angle, the kinematically allowed recoil energies lie in the 
interval Q- e Q < Q+ given by 

Q* = [Ell' & ( E  - W)'12J2. (8 )  

The GOS is known analytically only for the simplest atomic target, namely the hydrogen 
atom (see e.g. [ 121). The dielectric function of the FEG, derived from the random phase 
approximation, has been given in analytical form by Lindhard 131. The GOS for inner shells 
in celtain atoms has been computed, for example by Leapman er a1 [ 151. Except for certain 
cases such as AI [16], the complete COS has not been calculated from first principles; it also 
seems to be, in general, a formidable task. 

In the optical limit, Q = 0, the cas reduces to the Oos, df(W)/dW 5 df(0, W)/dW. 
It should, however, be observed that, as regards inelastic scattering in condensed matter, 
df(W)/dW is not identical to the (dipole transition) 00s related to the absorption of photons 
I171 (cf [IZl); they are approximately equal if Im[-I/e(O, W)] % Im[c(O, W)], i.e. if 

Experimental information on the 00s is presently available for many materials, mainly 
from optical and synchrotron radiation studies [18, 191 or as photoelectric absorption data 
PO, 21 1. This information, complemented with assumptions about dispersion (i.e. variation 
of the CrOS with Q), has been used to work out different COS models [4-81. We extend 

I€(O, W)l* I. 
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the experimentally determined.oos, denoted [df(W)/dW],,, into the GOs (i.e. to values 

J M FernrZndez-Varea et a1 

Q > 0) by 

where F(W’; Q, W) is the ‘oneelectron’ GOS or extension algorithm, i.e. the Gos obtained 
by extending a unit strength (one-electron) optical oscillator with resonance energy W‘ into 
the Q z 0 region (see [9]). In fact, the true COS can always be expressed in this way 
[9]. The approximation to be introduced consists basically of the use of phenomenological 
but physically motivated extension algorithms. Expressions for F(W‘; Q, W )  will be given 
below. Note that, as required by equation (9). F(W‘; 0, W )  = 8(W’ - W).  

2.2. Preparation of the 00s 

The Ooss adopted in the present calculations have been obtained from optical data which 
are available either in the form of the refractive index n and the extinction coefficient K [IS, 
191 or as the photoelectric cross section U* [20,211. In the first case, the 00s is evaluated 
by using equation (4) for Q = 0 with E = (n + k)*. In the second case, the 0 0 s  is obtained 
by means of the relation [22] 

d f (W)/dW = (mc/2zzezh)upj, (10) 

which applies when I E ~ ’  is close to unity. 
Unfortunately, for most materials, experimental optical data currently available extend 

over limited energy-loss ranges so that the complete 0 0 s  can only be obtained approximately 
by combining a variety of measured data (usually from different authors, obtained with 
various instruments and techniques and on different samples) with theoretical photoelectric 
cross sections. For the noble metals Cu and Au, we have constructed the ‘experimental’ 
00s by combining optical data (i.e. refractive index and extinction coefficient) from [ 181 for 
W e W d ,  and theoretical photoelectric cross sections from Cullen et al [21] for W > W d ,  
with Wd = 0.9 keV for Cu and 2 keV for Au. In the case of AI, we have directly employed 
the dielectric constant given by Smith et al [23, 241, extrapolated for W > 10 keV. For 
the semiconductor Si we have made use of data given by Bichsel [B], which cover the 
whole energy range of interest. All these ooss are given in tabular form: in the numerical 
evaluation of integrals involving the 0 0 s  we have used the continuous function obtained by 
linear interpolation on a log-log representation of the tabulated values. Figure 1 shows the 
OOSs for AI, Si, Cu and Au. 

The consistency of the adopted ooss can be checked by means of various sum rules. 
We utilize the f sum rule [17, 181 

d W = 1  

and the perfect-screening sum rule [%, U] (or ps sum) which, when written in terms of 
the OOS, takes the form 

dW = 1. 
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Figure 1. ooss for ( U )  AI 123. 241, (b) Si [25] and for (c) Cu and ( d )  Au [IS, 211. 

The main contributions to the ps sum arise from the region of small energy losses and, 
therefore, this sum rule provides a check for the low energy loss behaviour of the 00s. The 
f sum rule is more sensitive to medium and large energy losses and, thus. it gives a global 
measure of the quality of the 00s in this region. Further relevant integrals of the 00s are 

(where R = 13.6 eV is the Rydberg energy) and the well-known mean ionization energy I 
given by 
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The values of the f and ps sums and the quantities M i t  and I, computed from the 00% 
described above, are given in table 1. The reliability of the 0 0 S s  for AI [23, 241 and Si 
[25] is supported by the values of the f and ps sums. 

J M Ferncindez-Varea et a1 

Table I. Values of the f and ps sums, equations ( 1 1 )  and (12). the mean ionization energy 
I ,  equation (14), and ML. equation (13), for different materials. Iss are lhe mean ionization 
energies recommended in [281. 

Material z f sum ps sum I (ev) [SE (eV) Mi, 
AI 13 0.993 0.984 164 166i2 3.08 
Si 14 0.991 0.914 174 1 7 3 s  3.42 
C" 29 0.981 0.999 323 322zt10 3.47 
Au 79 0.968 1.090 737 790530 638 

From electron energy loss spectroscopy (EELS) measurements one can infer the energy 
loss spectrum in single inelastic collisions with scattering angle less than a certain value 
e,,,,, determined by the experimental set-up. Usually, 6'- is small (a few degrees) and 
the initial kinetic energy is much larger than the observed energy losses. Under these 
circumstances (6'- (< I ,  W << E), the EEL spectrum in single collisions can be computed, 
to lowest order, as 

This equation shows explicitly that, in this approximation, different extension algorithms 
lead to the same result; thus, the ability of a Monte Carlo program IO reproduce such 
small-angle spectra is dependent primarily on the 00s. Small-angle EEL spectra for Cu, 
computed from the presently compiled 00s by means of equation (IS) and derived from a 
measurement [29], are compared in figure 2. 

,--. 

4 0.8 

0.6 
0 
v 

w (4 
Figure 2. Single scattering EEL spechum for elect" in Cu ( E  = 60 keV. h, = 0.1 rad), 
computed from the cos by means of equation (IS) (full curve) and obtained from experiment 
(291 (dashed curve). 
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2 3 .  Excitation of weakly bound electrons 

FEG theory plays a central role in most of the optical-data models proposed to date. In the 
mcdels proposed by Ashley [MI and Penn [7], the extension algorithms are provided either 
by the Lindhard theory or by suitable one-mode approximations to it. We may characterize 
the FEG by the plasmon energy 4, which is related to the electron gas density p through 

&,, = ( 4 ~ f i ’ e ~ p / m ) ’ / ~ .  (16) 

The one-electron GOS for a FEG with plasmon energy 4 is given by 

FL(&,: Q ,  W )  = ( 2 W / l r @ m ( - I / d E p ;  Q .  W )  (17) 

where E L ( Q ,  W )  is the Lindhard dielectric function [3, 301. It should be noticed that the 
00s of equation (17) (neglecting plasmon damping) reduces to the delta function 

FL(&P; 0, W )  = N W  - 4). (18) 

The evaluation of cross sections (7) for a FEG with the Cos given by equation (17) 
has to be performed numerically and is quite lengthy. To simplify the calculations, we use 
the following two-modes approximation (similar to the T model of reference [ 9 ] )  for the 
one-electron GOS of the FEG: 

FTCE~: Q ,  W )  [ I  - g ( Q ) l W ’  - Wr(Q)) +g(Q)S(W - Q )  (19) 

where 

Equations (19) and (20) may be interpreted as follows. Within a limited region of small 
Q ,  two excitation modes coexist. One mode or branch with strength 1 - g ( Q )  corresponds 
to plasmon excitation with the dispersion relation W,(Q): the other, with strength g(Q) ,  
represents electron-hole excitation. For large Q ,  the plasmon branch disappears and the 
electron-hole branch attains a unit strength. For small Q ,  g ( Q )  decreases to zero roughly 
as Q3; thus, the strength of the plasmon branch is unity for Q=O [9]. 

The particular form of the functions W,(Q) and g ( Q )  and the values of the parameters 
A and B have been determined by requiring the resulting one-electron cross sections to 
agree closely with those computed from the Lindhard dielecmc function [31] (see below). 
The presently adopted values of these parameters are 

for xz > 3 and 
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where 
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&F (hz/2m) ( 3 7 ~ * p ) ~ / ~  = 4 ( (97~~/16)(h/me~)) ' /~  <I3 (22) 

x 2  = $(&p/&F)2. (23) 

is the Fermi energy of the FEG and 

(In the range 0 c EP c 100 eV, A varies between 5 and N 0.9, and E between N 0.4 and 
N 1.9). Evidently, we have 

The mean free path and the stopping power of electrons moving in a FEG are given by 
A-' = p d 0 '  and S = PO"', where d n l  are the one-electron cross sections (7). However, 
the maximum energy loss is Wmx = E - &F since larger energy losses would place the 
incident electron into a state below the Fermi level. With the COS given by equations 
(19t(2l) the cross sections (7) can be evaluated analytically. 

The expression (2 I a) for the parameter A has been determined so as to exactly reproduce 
the analytical expressions obtained for the mean free path and the stopping power from 
Lindhard's theory in the low-energy limit [30, 311. According to the Lindhard theory, the 
plasmon dispersion is given by W,(Q) = E p  + 6&pQ/(SG) + O(Q2). The slope E of the 
plasmon line in the two-modes model, given by equation (21~). has been determined to 
optimize the agreement of the computed mean free paths and stopping powers with the 
results of Lindhard's theory. 

Inverse mean free paths and stopping powers of electrons in electron gases of different 
plasmon energies, computed from Lindhard's GOS, equation (17), and from the two-modes 
model, equations (19H21). are compared in figure 3. It is seen that the two-modes model 
yields results which agree closely with those from the Lindhard theory. 

The COS obtained purely from the two-modes model is 

FT(W'; Q, W)dW' 
d f  (Qv W) 

dW 

where FT(W'; Q, W) is the one-electron GOS ofa FEG with plasmon energy W' as defined 
in equation (19). (Replacing FT by FL in equation (25) we recover Penn's model 171.) 
Owing to equation (18) (or the first term in equation (19)). the GOS (25) reduces to the 
experimental 00s in the limit Qd. Furthermore, by equation (24). the Bethe sum rule 
(3) is automatically satisfied, provided the adopted 0 0 s  fulfils the f sum rule. It may be 
noted that a continuous superposition of undamped FEG extension functions with varying 
W' apparently can be used to model, for example, short-lived (broad) plasmon excitations. 

We expect extension models based on FEG theory to be sufficiently adequate for weakly 
bound electrons in general, i.e. also for non-conduction bands. Our arguments for this are 
briefly discussed in the appendix. 

2.4. Excitation of inner-shell electrow 

Models based on the FEG have been shown [8] to be unsuitable for describing inner-shell 
ionization. They permit energy losses less than the ionization threshold. Moreover, the 
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plasmon branch gives rise to a pseudo-threshold, which however is displaced, because 
B z 0 (equation (7.0)). A GOS model which is more adequate for inner-shell ionization [81 
may be expressed as 

where 

F a ( W ' : Q , W ) s 8 ( W - W ' ) Q ( W ' - Q )  t 6(W-Q)Q(Q-W')  (27) 

and Q is the unit step function. The oneelectron GOS defined by equation (27) will be 
referred to as a '&oscillator' [32] (the S model of reference [9]). In this dispersion relation 
between Q and W, the first term models the contribution from 'distant' collisions (i.e. dipole 
transitions in the optical limit), while the second term models the contribution from 'close' 
collisions (Le. the Bethe ridge) [9, 321. K-shell ionization cross sections computed from 
the GOS model given by equation (26), using hydrogenic OOSs, are in good agreement with 
experimental data [81. 

2.5. New optical-data model 

2.5.1. Extension formula. We have previously compared different optical-data Gos models 
and suggested that a combination of the two-modes model given by equation (19) (for 
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valence electron excitations) and the 8-oscillator model given by equation (27) (for core 
electron excitations) should be a convenient approach 191. Accordingly, we shall compute 
the GOS from equation (9) with 

3 M Ferndndez-Varea et a1 

FT(W‘; Q, W) I Fa(W’; Q, W) 
if W’ < W, 
if W’ 5 W,. 

F(W’; Q, W) = 

The switch energy W, separates the region of low resonance energies W’, where the 
excitations in the low-Q limit have a large degree of collective character, from the high 
resonance energy region. W, is placed at the first threshold for inner-shell excitation, i.e. at 
the smallest core-level binding energy (see table 2). The regions W‘ c W, and W’ > W, 
are thus characterized by different dispersion relations. 

Table 2. Fermi energy EF,  swilch energy W, and compondig core level for different matm’ials. 
For Si, we have assumed four valence electrons per atom. h t i n g  them as a FE0 1251. 

Material ER iev) W. ieV) level 

Al 11.7 73 ZP 
Si 12.5 99 2P 
cu 7.0 74 3P 
All 5.5 54 5P3P 

The DCS given by equation (1) can be written as 

where 

d2u1(W’)/dQdW = (77e4/E)(l/ WQ)F(W‘; Q, W) (30) 

may be regarded as the DCS for a one-electron oscillator with resonance energy W‘ in the 
00s limit. 

25.2. Exchange correction. When the projectile is an electron, exchange between the 
incident electron and the electrons in the medium must be taken into account. To our 
knowledge, exchange effects in opticaldata model calculations have only been considered 
by Ashley [5 ,6 ] ,  who used a heuristic approach. A more conventional tool for dealing with 
exchange effects is provided by the Ochkur approximation [lo]. The Bom-Ochkur DCS is 
given by 

d20/dQdW = (ne4/E)(I/WQ) [ I -  Q/E + (Q/EI2]dftQ, W d W  (31) 

and is obtained by considering that the exchange scattering amplitude is approximately 
given by the leading term of an expansion of the Bom-Oppenheimer amplitude in inverse 
powers of E [ I 1  1. Therefore, the Bom-Ochkur approximation is essentially a high- 
energy approximation. For energies near the ionization thresholds, where optically allowed 
excitations (i.e. excitations with Q < W) dominate, the Bom-Ochkur approximation gives 
a satisfactory description of exchange effects [33]. On the other hand, collisions with energy 
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loss W much larger than the energies of the electrons in the target can be described as binary 
collisions with free electrons at rest. The DCs for this kind of collision may be calculated 
exactly 1131 and, for projectiles with kinetic energy much larger than the Rydberg energy. 
it simplifies to the non-relativistic M@ller DCS 

Clearly, this result differs from the limiting behaviour of the Ochkur exchange correction 
for large W .  

We shall introduce exchange effects by using the following one-electron m: 

)*] F(W‘; Q. W ) . ~  (33) 
d%I(W’) ne4 1 Q 
dQdW - E WQ E + W’ - W + ( E  + W’- W 

The modification introduced here, which is permissible owing to the asymptotic nature of 
the Born-oChkur approximation, agrees with the usual correction given in equation (31) 
when W=W’ and has the desirable effect of leading to the non-relativistic M@ller DCS, 
equation (32), when W >> W’ (since then Q N W). Due to the indistinguishability of the 
‘primary’ and the ‘struck’ electrons, we can consider the primary as the most energetic after 
the collision. Owing to this convention, in collisions with free electrons at rest the energy 
loss of the primary electron cannot exceed the value w,, = $. h the case of inner- 
shell ionization, the primary and secondary electrons have the Same kinetic energy when 
W = W,, = ; ( E  + E& where E b  is the ionization energy of the considered shell. Notice 
that, by using this value for Ww, the Ochkur correction keeps the ionization threshold 
unaltered. 

The value of the maximum energy loss is also limited by the exclusion principle, which 
forbids energy losses larger than E - EF that would place the incident electron into an 
occupied state below the Fermi level EF of the medium (see table 2). 

25.3. Resulting one-electron cross sections. The exchange corrected one-electron DcSs for 
W’ t W,, i.e. when the extension algorithm is the &oscillator given by equation (27). are 
computed as 

d*ul(W’) ---[I r e 4  1 - p+ ( ; ) * ] 8 ( W -  W‘)O(W‘- Q) 
dQdW - E W Q  

- ~ 

re4  1 Q 
+--[I- E W Q  E + W’- W + ( E  + W’-  w 
x 6(W - Q)O(Q - W’). (34) 

The first term in this expression corresponds to distant (‘resonance’) collisions; the Ochkur 
correction factor has the usual form given by equation (31). The second term accounts for 
close (binary) collisions; when W‘ < E - W, it reduces to the non-retativistic Moller Dcs, 
equation (32). 

In order to get a general recipe which keeps the ionization thresholds unaltered, the 
maximum energy loss is taken to be w,,(W‘) = min{E - EF. ; (E  + W‘)). This is 
equivalent to considering W’ as the ‘binding energy’ of the target electron. This assumption 
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was also adopted by Ashley [5] and is justified by the fact that most inner-shell excitations 
occur for W’ not much larger than the ionization threshold. 

Excitations with W‘ c W, are treated as if they occur in a FEG with phSmOn energy 
W’, and are described by using the two-modes GOS model given by (19). Since the Ochkur 
exchange correction is based on the assumption of single-electron excitations, it is not 
justified for plasmon (i.e. collective) excitations of an electron gas. Therefore, the one- 
electron DCSS for W’ c W, are split into contributions from electron-hole and plasmon-like 
excitations: 

J M Ferruindez-Varea et a1 

dzor (W‘)/dQdW = dzOl,ch(W’)/dQdW + d201,,l( W‘)/dQdW. (35) 

The contribution from electron-hole excitations, including Ochkur’s exchange correction, 
is given by (see equations (19) and (33)) 

Here the maximum energy loss is taken to be W,,(W’) = min[E - EF, ;E], i.e. the 
‘binding energy’ is set equal to zero. The one-electron DCS for plasmon-like excitations is 
computed directly from equations (19) and (30), i.e. 

d*u,,,(W’)/dQdW = (xe4/E) (I/WQ)[l -g(Q)lWV - WdQ)) (37) 

and the maximum energy loss is W,-(W’) = E - EF. 

compute the integrals 
Finally, to obtain the inelastic mean free path A and the stopping power S we have to 

for n = 0 and n = 1, respectively, where 

are the oneelectron total cross sections which, by using equations (34)-(37), can be 
evaluated analytically. The resulting expressions are lengthy, but simple to code in a 
computer program 1341. The numerical evaluation of A and S reduces to a single quadrature. 

3. Calculation of A and S 

Computed inelastic mean free paths and stopping powers for AI, Si, Cu and Au are shown in 
figures 4-7 as functions of E - EF, For comparison purposes, we also give the results from 
the optical-data model calculations of Ashley [6] and of Tanuma et a1 [35]. These authors 
used Ooss and extension algorithms different from the ones adopted here. Ashley used a 
different approach to introduce exchange effects, which are neglected in the calculations on 
mean free paths by Tanuma et al. The magnitude of the exchange corrections on calculated 
h and S is indicated in figure 5. Exchange effects have a swonger influence on the stopping 
power than on the mean free path (since S is more sensitive to the high energy loss part of 
the inelastic DCS). The effect of the value of W, on I and S is indicated in figure 7, where 
we compare results obtained with W, = 30.54 and 80 eV for Au. The dependence on ul, 
can be understood from the global analysis in [9]. 
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Fwre 4. Inelastic mean free path 1 (a) and slopping power S (b) for elecmns in Al. Results 
from the present opticaldala model are represented as full CUN~S. Short-dashed and longdashed 
curves represen1 the optical-data model calculations of Tanuma el a1 (351 and of Ashley [61. 
respectively. Crosses are theoretical calculations of Ashley er 01 [16]. Experimental data for A 
are from references [36] (0). [371(0) and [381 (A): experimental data for S are from references 
[391 (0). [401 (O), [411 (.)and WI (A). 

4. Fitted analytical formulae for A and S 

For practical purposes, it may be useful to have simple analytical formulae for the inelastic 
mean free path and the stopping power. We use the asymptotic formulae due to Bethe [12] 
as a guide to obtain expressions with a wider range of validity. The Bethe formula for the 
mean free path is 

A-' = N ( n e 4 / E R )  [Mk In (4cmlE/R) + y d R / E )  + O [ ( R / E ) 2 1 ] .  (40) 

The quantities ctoI and ymt are integral properties of the Gas, which cannot be computed 
only from the 00s. 

The Bethe formula for the stopping power can be written 

S =  ~(zne~/~)z[in(~/l)+f(l - I ~ ~ ) + o ( R / E ) ]  (41) 
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Figure 5. Inelastic mean free palh .A (a) and stopping power S (6) for elect" in Si. Results 
hum the presenl optical-data model are represented as full c w e s .  Results obtained by excluding 
lhe Ochhur exchange coneclion are represented as dashed curves. Experimental data for A are 
from references E431 (C9,[44] (O), [45] (A), 1461 (A), 1471 (0). [481 (m) and [49] (V). 

where I is the mean ionization energy. The second term on the right-hand side of equation 
(41) originates from exchange. 

From formulae (40) and (41) we expect that. for energies which are not too low, the 
calculated mean free paths and stopping powers may he closely reproduced by the following 
expressions: 

A-' = N ( n e 4 / E R )  [M&ln(4ulE/R) +az(R/E) +a,(R/E)*]  (42) 

(43) S = N(Zrre4/E)Z[ln(E/Z)+ +(I  - I ~ ~ ) + u ~ ( R / E ) + ~ ~ ( R / E ) ' ]  

where the dimensionless quantities U , ,  . . . , as are considered as adjustable parameters. 
Except for small kinetic energies, the results obtained hy our optical-data model 

calculation can be closely approximated by expressions (42) and (43). The values of the 
parameters U , ,  . . . , u5, given in table 3, have been determined by numerical least squares 
fit to the calculated mean free path and stopping power for kinetic energies larger than 
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Fwre 6. Inelastic mean free path A (a)  and stopping power S (6) for electrons in Cu. Results 
from the present opticaldata model are represented as full curves. Short-dashed and longdashed 
curves represent fhe optical-data madel calculations of Tanuma er a1 1351 and of Ashley 161, 
respectively. Experimental dala for A x e  from references 1431 (0). (501 (A). [SI] (G) and [521 
(A); experimental data for S are from reference [39] (0). 

300 eV for h and larger than 2x10 eV for S.  It i s  not convenient to extend the fit to 
lower energies, since in this region the behaviour of A and S cannot be reproduced by the 
simple expressions (42) and (43). In the considered energy intervals, the relative differences 
between the numerical values and the fitted analytical formulae are less than 2%. 

Table 3. Paramem of the analytical formulae (42) and (43) for different materials. 

Material (11 a2 a3 0 4  as 

AI 0.8532 -65.31 638.0 7.896 -19.17 
Si 0.8503 -70.35 685.8 8.666 -21.67. 
cu 0.4504 -103.4 1114 18.92 -98.98 
Au 0.4009 -204.4 2421 52.93 -798.3 
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Figure 7. Inelastic mean h e  path 1 ( U )  and stopping power S (b) for eiecvow in Au. Results 
obtained from lhe present optical-data model with W, = 30, 54 and 80 eV are represented 
as short-dashed, full and long-dashed curves, respectively. Experimental data for A are f" 
references 1501 (Vh 1531 (01, 1541 (Ah g51 (U). 1561 (W, 1571 (V). 1581 (01, 1591 (A) and 1601 
(0); experimental dam for S are from reference 1391 (0). 

Appendix 1. 

The application of FEG theory as an extension algorithm for the conhibution to the 00s 
from electrons in non-conduction bands-for example the valence electrons in Si and the 
3d electrons in Cu-may be questioned. As available one-electron excitations are interband 
rather than intraband transitions, the FEG model is apparently in error since it allows energy 
losses below the energy gap threshold. A basic argument in favour of the FEG model is the 
importance of collective effects in the excitation of weakly bound electrons in condensed 
matter [ 141. For example, it would not be possible to separate the 00s into different regions 
originating from the 4s and the 3d electrons in Cu, due to their mutual polarization. Due 
to this collective behaviour, one might expect a similar dispersion relation as in the FEG. 

Several authors have presented models for the interaction of a charged particle with a 
semiconductor or insulator by introducing a band gap in a FEG model (see e.g. references 



Inelastic scattering of electrons in soli& 3609 

[61-63]). In this spirit, we have examined the effect of a 'band gap' introduced into the 
two-modes model. For brevity and cleamess we neglect exchange and consider a simplified 
two-modes model of the FE0 with the 00s: 

F(&p; Q ,  W )  = 11 - g(Q)lS(W - (Ep  + Q ) )  + S(Q)S(W - Q )  (-4.1) 

where 

g ( Q )  =min(l, Q3/Eil. (A.3 

A band gap Eg is introduced (preserving the validity of the sum rule (3) and algebraic 
simplicity) by changing equabon (A.1) into 

Wp; Q.  W )  = U - g(Q)lS(W - (Ep + Q ) )  + g ( Q ) W '  - m=Wg, Ql). (-4.3) 

For incident electron energies E e Eg, the cross sections obtained with equation (A.3) 
will be zero. For E t Eg,  the results of equations (A.l) and (A.3) will differ only in 
the contribution from the second term in the interval 0 < Q < E,. A simple calculation 
shows that the differences in mean free path and stopping power between (A.l) and (A.3) 
are negligible, except at energies E < 2Eg. Since Eg typically has a magnitude of a few 
eV, this difference can be ignored at energies of interest. Moreover, 'false' energy losses 
W e Eg are rare since they appear only for Q c Eg, where the plasmon mode nearly 
exhausts the Bethe sum rule. Evidently, they do not appear in the small-angle spectrum, as 
seen from equation (15). We conclude that the FEG should be an acceptable approximation. 
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